

Net Zero Carbon Pathways

Peter Schofield – Director and Principal Environmental Consultant **Glyn Mountford –** Director and Principal Engineer

ENERGY | ENVIRONMENT | TRAINING

GEP Environmental

- Provide Climate Change and Carbon Consultancy to the public sector across the UK
- Supporting and advising Local Authorities in London for over 10 years
- Our services are available directly or via the London Energy Project (LEP) Additional Services Framework (appointed for 8 years)
- The LEP Framework is available to any Local Authority in England and available for direct call-off until **31 March 2020**

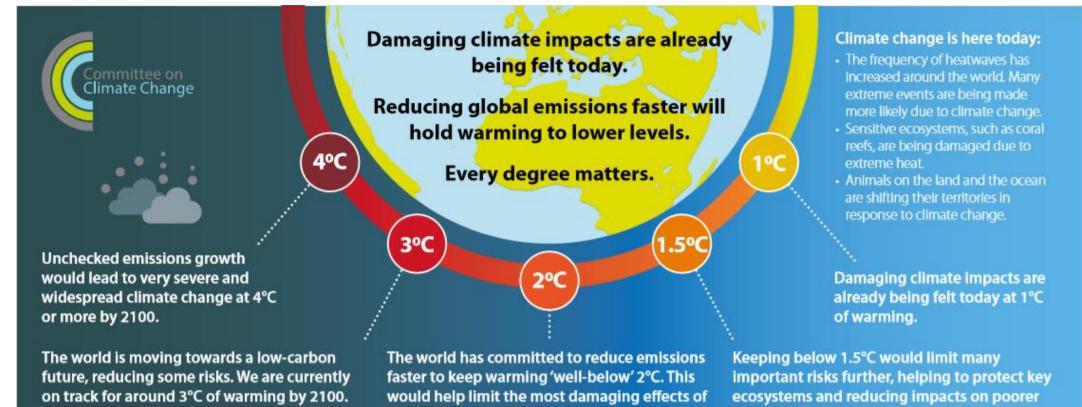
The Context

www.gepenv.co.uk

ENERGY | ENVIRONMENT | TRAINING

Slide: 3

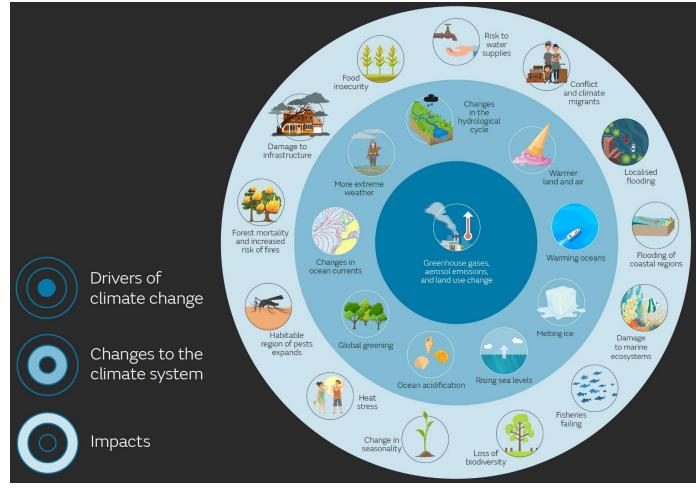
Net Zero Carbon Key Definitions


Net Zero Carbon – reduce emissions as close to zero as possible and then offset residual emissions

Other definitions:

- Carbon Neutral offsetting carbon emissions (just offsetting, not focussed on carbon reduction)
- Carbon Zero zero carbon emissions (no need to offset any emissions)
- Carbon Positive organisations export renewable energy / use carbon removal technology greater than its organisational emissions.

Net Zero Carbon Context – Climate Change Scenarios


Source: Net Zero. The UK's contribution to stopping global warming. Committee on Climate Change, May 2019

climate change.

people around the world.

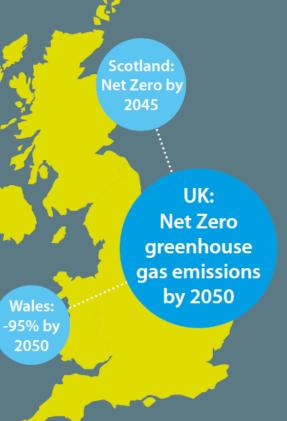
Net Zero Carbon Context – Climate Change Impacts

Source: UK Met Office, Effects of Climate Change www.gepenv.co.uk

ENERGY | ENVIRONMENT | TRAINING

Net Zero Carbon Context – Net Zero Target

Annual costs of achieving net-zero emissions are between 1-2% of GDP in 2050, comparable to those estimated in 2008 for achieving an 80% target.


100% reduction in emissions in 2050 estimated today

Innovation has driven down the costs of key technologies, such as offshore wind & battery storage.

Some costs to consumers, such as increased heating bills, can be offset by cheaper transport costs (thanks to a widespread shift to electric vehicles) and cheaper electricity bills (thanks to low cost renewable electricity).

There are many benefits of phasing out harmful emissions

For the economy

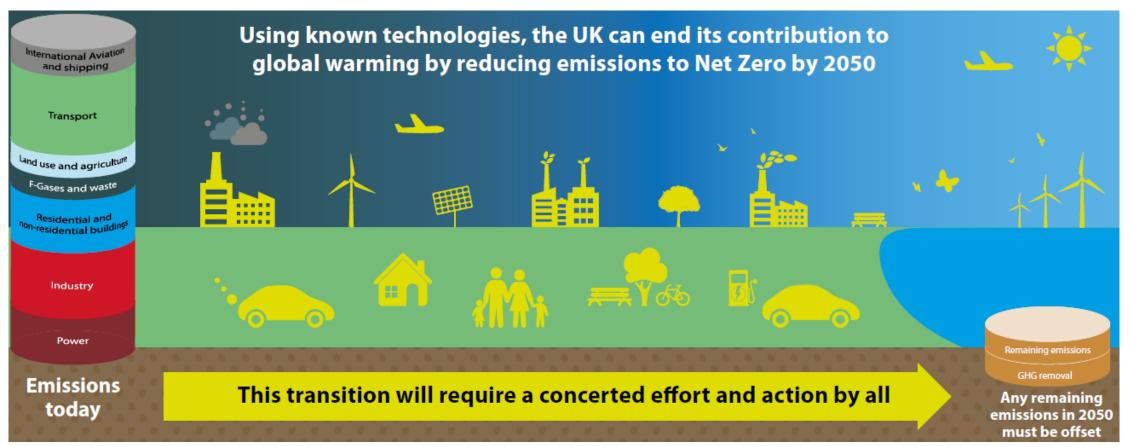
New green industries with new jobs and export opportunities for the UK.

For the individual

Quieter streets, cleaner air, less congestion.

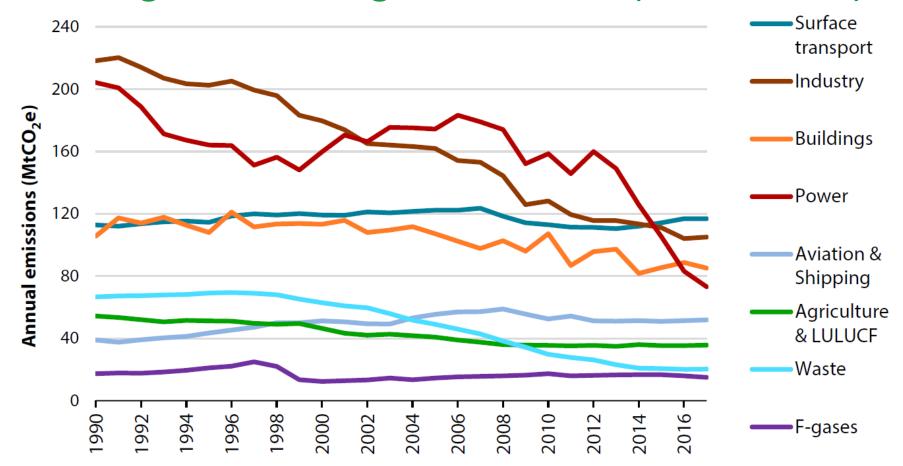
Smarter cities and more comfortable homes.

Healthier lifestyles, with more active travel and healthier diets.



For the country

More biodiversity, cleaner water, more green space to enjoy. Reduced global warming, avoiding climate damages like flooding.

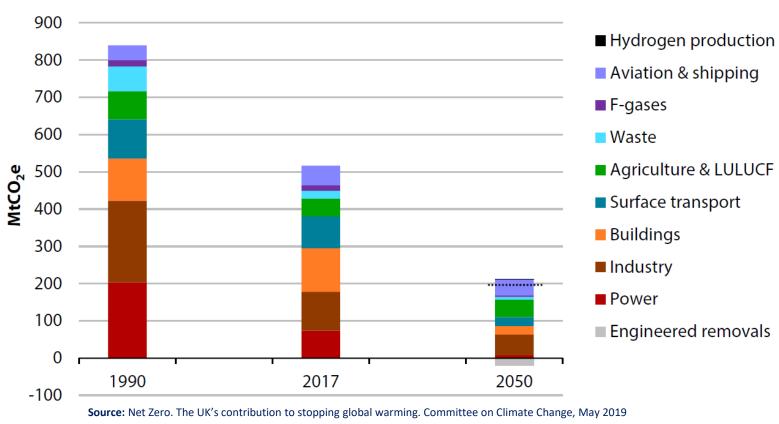


Net Zero Carbon Context – The Challenge

Context – Progress Reducing UK Emissions (1990 – 2017)

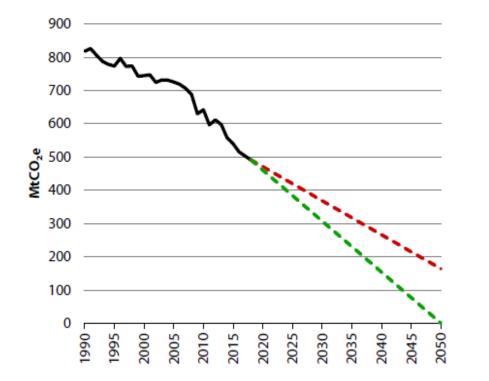
What are Net Zero Carbon Pathways?

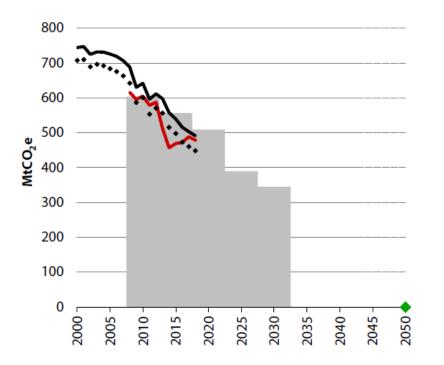
Net Zero Carbon What are Emissions Scenarios?


- Emissions scenarios describe the association between carbon emissions and temperature change
- Emissions scenarios are linked to different climate scenarios (i.e. well below 2°C scenario and well below 1.5°C scenario)
- Enable us to understand the rate of change in carbon emissions that is required to minimise impacts of climate change

Net Zero Carbon What does Net Zero by 2050 look like?

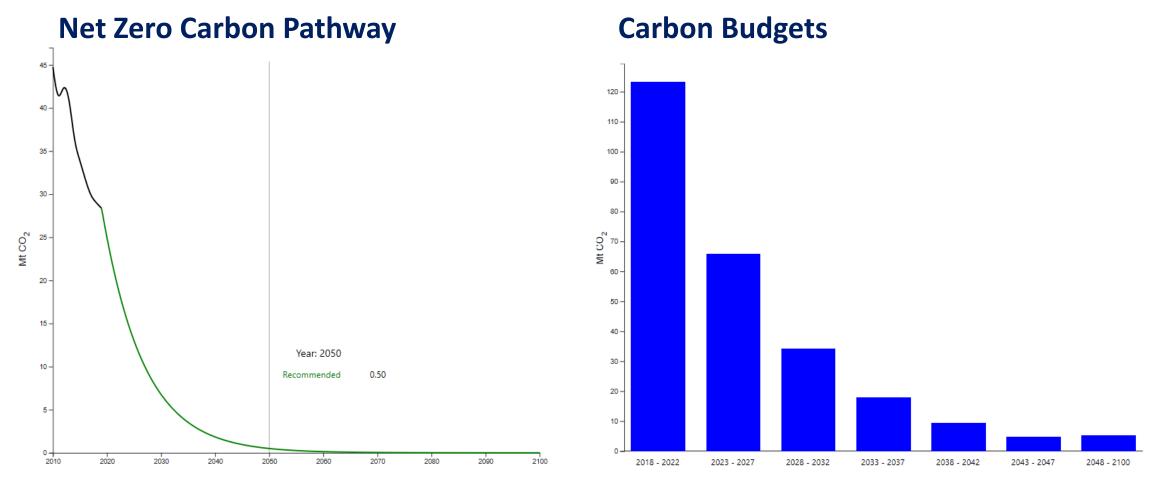
- Requires significant carbon emissions reduction across all sectors
- Greenhouse Gas (GHG) removals will be required to balance positive emissions (aka residual emissions)
- GHG removals include carbon sequestration through afforestation and Carbon Capture and Storage




Net Zero Carbon Net Zero Carbon Pathway and Carbon Budgets for the UK

Net Zero Carbon Pathway

Carbon Budgets



Net Zero Carbon for London Local Authorities

Net Zero Carbon Pathway for London Authorities

Source: The Tyndall Carbon Budget Tool

www.gepenv.co.uk

What do Local Authorities in London need to do?

- Stay within a maximum cumulative carbon emissions budget of 203.5 million tonnes (MtCO₂) for the period of 2020 to 2100^{*}
- Reduce emissions on average by a minimum of -12.2% per year
- This requires an immediate and rapid programme of decarbonisation
 - Transition away from fossil fuel use
 - Deploy low carbon electricity generation
 - Manage land uses to increase levels of carbon sequestration

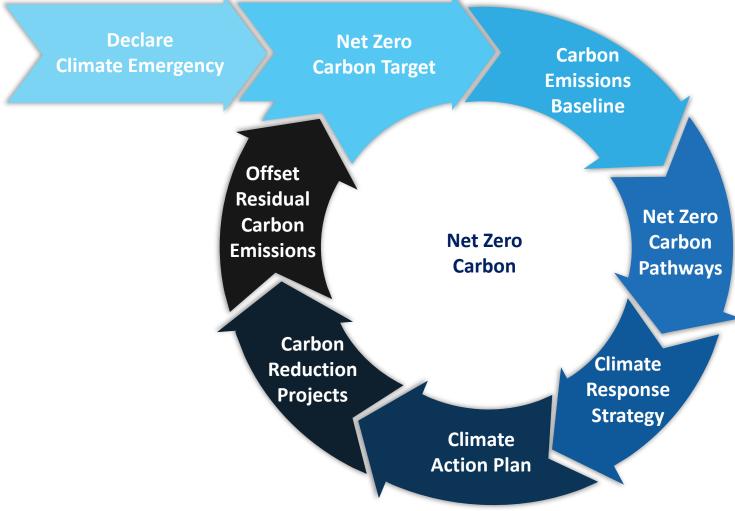
*Based on 2017 CO₂ emission levels, London would use this entire budget within 7 years from 2020!

Local Authority Response

Net Zero Carbon Declaring a Climate Emergency

- Recognition that climate change presents a **risk** to the community
- Acknowledgement that the measures taken to date are not enough
- A signal of intent that the Council and community need to act on the causes and impacts of climate change

Source: https://www.climateemergency.uk/


Common features of a Climate Emergency Declaration?

- Setting a Net Zero Carbon target and deadline
 - i. Council usually aiming for 2030
 - **ii. Borough** usually aiming for 2050
- Development of a Climate Response Strategy and/or Climate Action Plan
- Expressing a willingness to **collaborate** with local people, organisation and businesses
- Call to **Government** to provide support and take action

Declared a Climate Emergency - What next?

Net Zero Carbon Our Approach to Net Zero Carbon

- Encourages pro-active approach for planning to achieve Net Zero Carbon
- Approach does not need to be consecutive – action is key
- Based on process of annual performance monitoring
- Requires engagement across the Council
- Decarbonisation is key
 - Buildings
 - Transport

Net Zero Carbon What are the challenges?

Calculating Carbon Emissions Baseline and Pathways

Setting the scope of the baseline (corporate, schools, housing)

Access to data and quality/completeness

Ensuring the pathway is accurate – it forms the basis of future decision making

Strategy and Action Plan

Short time frame – typically a 10 year timeline

Optimum mobilisation of resources

Ensuring that planned actions/projects will achieve Net Zero Carbon

Carbon Reduction Projects

Quick wins already achieved

Identify projects that deliver best carbon cost-effectiveness

Decarbonisation of Heat in Buildings – Case Study

How are GEP Environmental supporting?

Climate Change and Carbon Consultancy

✓ Carbon Emissions Baselines and Carbon Pathways
✓ Net Zero Carbon Strategy and Action Plans

Energy Saving in Buildings and Transport

✓ Building Energy Efficiency Surveys
✓ Renewable Technology Feasibility Assessments
✓ EPCs and DECs

London Energy Project (LEP) Additional Services Framework Available for direct call-off until 31 March 2020

Case Study

Decarbonisation of Heat in Buildings

Decarbonisation of Heat in Buildings Green Gas

- Different to green energy which is generated from renewable sources or when providers pay to offset carbon emissions in worldwide projects
- **Biomethane (Green Gas)** is much harder to generate than renewable electricity, so it's much less common in "Green" energy tariffs.
- Sources include anaerobic digestion, landfill gas, synthetic gas
- Gas is processed before injection into the grid

DOMESTIC GREEN ENERGY SUPPLIERS			
Supplier	Green Gas	Carbon Offset	p/kWh
Green Energy UK	100%		4.62
Bulb	10%	90%	3.37
Good Energy	6%	94%	4.7
Ecotricity		100%	4.76

- St Andrews University DH Network
- Large scale biomass district heating scheme **6.5MW biomass boiler**, 23km of low heat loss pipe, connecting 41 buildings.
- Completed late 2017

GEPEnv called in to to help the University to optimise further **Carbon Savings** and **maximise the use** of the Biomass heat network

GEPEnv provided technical feasibility, developed business case and supported the Universities funding application

Challenges:

- Restraints on DH Heat flow capacity
- Existing significant localized gas consumption boilers left in circuit acting as heat loss
- Smoothing demand profile to minimise use of gas boilers to meet early morning and other peaks
- Potential connection of other low carbon heat sources onto network
- Further building heat demand reduction focusing on controls, air handling systems, fume cupboards, improved building fabric modelling and smart room technologies

Project Engineering Solutions:

- ✓ Relocate some boiler capacity to energy centre ensure hot water is only circulated through the boilers when required pump segregation and control improvements Gas savings 5,000MWhrs or 85% 900 tCO₂
- ✓ Improved utilisation of the biomass boiler. Increase thermal storage at building level by around 3,000 litres for 50 buildings, savings around 3,000MWhrs of biomass / gas consumption – 500 tCO₂
- ✓ Substantial savings in gas boiler maintenance

Project Engineering Solutions (Cont'd):

- ✓ Heat pumps using rejected heat recovery from chiller systems 500,000kWh 100 tCO₂
- ✓ Sea Water heat pumps as the lead heating system, with filtered sea water 200,000kWh – 40 tCO₂
- ✓ Ground / water source heat pump to replace existing gas fired boilers combined with improvement on fabric insulation - to operate heating at the lower temperatures – 450,000kWh – 90 tCO₂
- ✓ All above attracted Renewable Heat Incentive

Project Engineering Solutions (Cont'd):

- Controls including programme of delta T 3p to 2p valves across a range of LTHW systems
- Air Handling system efficiencies, Inverter Controls and heat recovery systems
- Modelling of building thermal improvements
- Smart room control technologies phase 1 focus on electronic time and motion controllers for TRV's – commercial spaces with room booking and halls of residence

Thanks for listening.

Peter Schofield

Director and Principal Environmental Consultant

M: 07920 194998

E: <u>peters@gepenv.co.uk</u>

W: www.gepenv.co.uk

Glyn Mountford Director and Principal Engineer M: 07843 421712 E: glynm@gepenv.co.uk W: www.gepenv.co.uk

ENERGY | ENVIRONMENT | TRAINING